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Let °< p < 1/8 and consider the Cantor set C*(p) (where C* (1/3) would be
the classical Cantor set). For any sequence ill = ((" (2, ... ), (" E C*(p), let
Bfi(w)=maxZEC'(p)ll~~j Iz-(,I. It is shown that there exists a constant 8=8(p),
independent of w, such that Bn(w) > (logn)U for almost all n (i.e., all except a
sequence of density zero). An analogous theorem for the unit circle C = {izi = 1}
instead of C*(p) (with "infinitely many" instead of "almost all") was proved before by
the author (Bull. London Math. Soc. 12, 1980, 81-88), solving a problem of Erdos.
CO 1991 Academic Press, Inc.

1. INTRODUCTION

Let K c C be an arbitrary compact subset of the complex plane. Denote
by g;n(K) the set of all polynomials of the form Pn (z) = n~ ~ 1 (z - aJ, with
aU (not necessarily distinct) zeros a v in K ("K-polynomials"). We call
m n(z) E g;n(K) a minimal polynomial of degree n if max ZE K [mn(z)1 is mini
mal with respect to all K-polynomials of degree n. Due to the compactness
of K, minimal polynomials of degree n always exist, but are not uniquely
determined in general.

The numbers maxZEKlmn(z)[ are characteristic for the set K and will be
denoted by An (K) (n = 1, 2, ... ) in the sequel.

Let w = «( l' (2, ... ) be an arbitrary sequence of (not necessarily distinct)
points in K. With every such sequence w we associate a sequence of
K-polynomials {qn(w, z)} by letting qn(w, z) = n~~ 1 (z- (v). Let
B n(w, K) = maxzEK[qn (w, z)[. We have trivially Bn(w, K) ~ An (K) for all n.

The problem we are going to discuss is, roughly speaking, the following:
Does there exist a sequence (JJ in K such that all polynomials qn(w, z)
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possess the same approximation quality as the minimal polynomials m,,(z)?
More exactly (cf. P. Erdos [2J): Does there exist an w with

. B,,(w, K)
hm sup () < oo?
,,~oo An K

(1)

For the unit circle K= {izi = l} the answer is negative. The author [12J
proved that for some numerical constant e> 0 the relation

B,,(w,K»(1 )8
A,,(K) ogn (2)

holds for each wand infinitely many n. Using the reduction method
from [10J he can even show that (2) holds for a subsequence of
n's of asymptotic density 1 ("almost all n"). In Oberwolfach, 1980,
Loxton announced a considerable improvement of the bound (2):
B,,(w,K)/A,,(K»n 1

/(IogI0g,,)8 holds for some e>o and infinitely many n.
This result is close to best possible, since there exists a sequence w with
Bn(w, K)jA,,(K)<n for all n.

A general answer to problem (1) for arbitrary K seems to be difficult.
However, for Jordan curves satisfying certain smoothness conditions the
result (2) may be obtained as well. For domains bounded by Jordan curves
(satisfying again certain smoothness conditions) the situation is totally
different: the answer to problem (1) is positive.

In this paper we restrict ourselves to considering a certain class of
Cantor sets. It turns out to be convenient to split problem (1) into two
problems: the separate investigation of the behaviour of the numbers
A,,(K) and B,,(w, K), respectively, with K satisfying a natural norming
condition. '

2. SOME POTENTIAL THEORY

2.1. Potentials. In this section we list some basic facts from potential
theory, necessary both for understanding the problem and obtaining quan
titative results. Let K c C be a compact set. Denote by 9'.n(K) the class of
all probability measures on the O"-algebra of Lebesgue measurable subsets
of K. The support supp J1 of a probability measure ("p.m.") J1 E 9'.n(K) is the
set of all points z E C with the property that, for each e-neighbourhood
N. (z), the measure J1(N. (z) n K) is positive. Clearly supp J1 c K.

Every probability measure J1 E 9'.n(K) generates a logarithmic potential
UI'(z), defined by UI'(z) = - hlog Iz-(I dJ1(o.

The potential UI' (z) exists for all z E C (possibly UI' (z) = CfJ), satisfies the
inequality - CfJ < UI' (z) ~ 00 for all z E C, and is a superharmonic function
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on C. Outside of K, that means in every subdomain of the complementary
set C\K, the potential UIt(z) is even harmonic.

We introduce an important topological concept: the outer boundary of a
compact set K. The complement C\K is the disjoint union of at most
countably many domains, exactly one of which, denoted by Gco' contains
the point 00. The boundary 8G co of Gco is contained in the boundary aK
of the set K and called the outer boundary of K.

2.2 Energy, Capacity, and Equilibrium Distribution. The energy l(fl) of
a p.m. fl E 9R(K) is defined by the formula

I(fl) = f UIt(z) dfl(Z) = -f flog Iz-(I dfl(z)dfl(C).
KKK

Let V = infltE m(K) I(fl). The inequality - 00 < V < 00 holds. The number
e- v is called the logarithmic capacity of the set K and denoted by caplK.
We have 0 <caplK< 00. Logarithmic capacity is known to behave linearly
when K is submitted to a homothetic transformation.

A set K has zero capacity if and only if all p.m.'s on K possess infinite
energy. From now on we restrict ourselves to sets K being "essential" in the
sense of potential theory, namely sets K for which capi K> 0 holds. In this
case there exists a unique probability measure y E 9R(K), called the equi
librium distribution of K, for which the energy l( y) becomes minimal. The
support supp y of the equilibrium distribution is identical with the outer
boundary 8Gco of K.

The equilibrium distribution 'Y has another characteristic property, even
more important for our purposes: the potential Uy(z) is constant "almost
everywhere" on K in the following sense. We have Uy(z) = -log caplK for
all Z E K except for a subset of logarithmic capacity zero.

To exclude such exceptional sets we make the additional assumption
that K be regular in the sense of the Dirichlet problem. Though not
defining the concept of regularity, we mention the following facts.

(a) The problem of regularity is considered as solved. There are both
necessary and sufficient conditions (N. Wiener) and criteria of practical
importance (e.g., Poincare's cone condition for domains).

(b) The sets K we are dealing with in this paper are known to be
regular.

By imposing, if necessary, a suitable homothetic transformation on the
set K, we may further assume without restriction that the norming
condition caplK = 1 holds.

From now on let X be a regular compact set with logarithmic capacity 1.
For the equilibrium distribution y the equality Uy (z) = 0 holds for all Z E K.
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2.3. Polynomials and Potentials. With every K-polynomial Pn (z) =
n~=l(z-aV) we associate a discrete probability measure nnEIDl(K) by
assigning to each zero av with multiplicity k v the mass kvln. The distribu
tion nn generates the potential Ull)z) = - (lIn n::~= 1 log Iz - avl, related to
the polynomial Pn(z) by the identity U"Jz) = - (lin) log IPn(z)l.

We have

max IPn(z)1 =exp (-n . min U"Jz)).
ZEK ZEK

(3)

In this way all problems dealing with the modulus of a polynomial can be
translated into the language of potential theory.

The discrete distribution associated with a minimal polynomial mn(z) is
called a minimal distribution and will be denoted (although not uniquely
determined in general!) by Iln-

For the characteristic numbers An (K) the relation An (K) =
exp( -n ·minzEK Ultn(z)) is valid in view of (3).

Let us first show that An(K);:' 1 holds for each n EN. Let y be the equi
librium distribution of K. The subsequent identities follow from Fubini's
theorem and the fact that the equilibrium potential vanishes identically
on K.

So we have minzEKU.un(z)~O, hence An(K)=exp(-n.minzEKU.un(z))
;:, 1. It is known from potential theory (Goluzin [4, Chap. VIIJ) that the
limit limn--> 00 An (K)l/n exists and is equal to the logarithmic capacity of K,
hence equal to 1 in our case.

3. THE LIMITING BEHAVIOUR OF MINIMAL DISTRIBUTIONS

A sequence {vn} of p.m.'s from IDl(K) is called weakly convergent to the
p.m. v E IDl(K) (vn -4 v), iflimn--> 00 SKf dvn= hfdv holds for every function
f continuous on K.

The following theorem is a generalization of a classical result of Fekete
(see, for example, [3J), originally stated for the circle and a certain class
of Jordan curves.

THEOREM 1. Let {vn } be a sequence of probability measures on K,
satisfying the relation limn --> 00 minzEK Uv'(z) = O. If the support of the equi
librium distribution y is all of K (which is equivalent to K = oG (0)' then the
sequence {v n } converges weakly to y.
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COROLLARY. From the relation limn ~ ex) An (K)l/n = 1, mentioned at the
end of Section 2, we see that Theorem 1 is valid for any sequence {fin}
minimal distributions.

Proof (a) Assume that {v n } does not converge to y in the weak sense.
Then there exists a subsequence {vnJ c {vn }, weakly convergent to a p.m.
v E Wl(K) with v -=I y. The proof of the latter statement runs along a weU
known pattern, using separability of the space of functions continuous on
K, and the Cantor diagonal process.

(b) Consider the potentials belonging to the distributions vnk and v.
We have (Landkof [7, Theorem 3.8]) Uv(z)=liminfk~ooUVnk(z) for all
z E K except for a set of capacity O. Since a set of capacity 0 automatically
has equilibrium measure 0, the relation Uv (z) = lim infk~ ex) UVnk (z) holds

for y-almost all z E K. Hence, by the assumption, we have Uv (z);:: 0 for
y-almost all z E K.

(c) Let Pos Uv= {zEKI Uv(z»O}. Because of the uniqueness of the
equilibrium distribution we have

O=l(y)<l(v)= t Uv(z)dv(z).

Hence Pos Uv is nonvoid.
On the other hand, using the relation h Uv(z) dy(z) = JK Uy(O dv(O = 0

we deduce that y(Pos Uv) = O.

(d) Let Zo E Pos Uv. Since supp y = K by assumption, every e-neigh
borhood NAzo) (] K has positive y-measure. Since on the other hand
y(Pos U.)=O holds, there exists a sequence of points Z1' Z2' ... with
Zk E K\Pos Uv and limk~ co Zk = zoo From the upper semicontinuity of the
logarithmic potential we get Uv(zo):S;liminfk~oo Uv(Zk):S;O, contrary to
the choice of zoo This proves the assertion.

We finish this paragraph with two remarks.

1) Without the assumption K = JG 00 the theorem is no longer true.
A sequence of minimal distributions need not converge to the equilibrium
distribution in this case, even need not converge at all. However, the
behaviour of the sequence {fin} is not arbitrary. Using the notion of the
balayage of a p.m. f1 E Wl(K) onto the outer boundary JG 00 of K
("balaGa) 11," see, for example, Chap. IV in Landkof's book), the following
generalization of Theorem 1 is valid (no further condition on K).

THEOREM 1'. Let {vn} be a sequence of probability measures on K,
satisfying the relation limn ~ ex) minzE K UvJz) = O. Then balaGa) vn -4 Y holds.

If K = JG00' the balayage of any p.m. Vn E Wl(K) coincides with Vn itself,
and we obtain Theorem 1 as a special case.
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2) Erdos' problem (1) admits of the following potential theoretic
interpretation. We assume K = oG00' There exists a unique "ideal distribu
tion" on K with the property minzEKUI'(z)=O, namely the equilibrium
distribution y itself. For any distribution J1 different from y we have
minzEK UI'(z) < 0. The greater minzEK Ull,Jz) is for a discrete distribution
Tin' the better is the uniform approximation quality of the corresponding
polynomial Pn(z) on K. Now Erdos' problem may be regarded as the
problem of approximating the equilibrium distribution y on the one hand
by discrete n-point distributions Tin (chosen independently for each n), on
the other hand by a sequence of discrete distributions, coming from a single
sequence w = (~1' ~2' ... ) of points on K.

4. CANTOR-LIKE SETS

4.1. On the Behaviour of the Numbers An" Now consider a certain class
of linear sets of logarithmic capacity 1 and Hausdorff dimension < 1. The
estimate of the numbers An' almost trivial for the unit circle, causes
considerable difficulties. At this point we mention again the well-known
relations A n ~ 1 and limn ~ 00 A ~/n = 1.

Because of the "restricted mobility" on sets of dimension < 1 one might
conjecture that the sequence of the An's cannot be bounded. The following
example shows, however, that at least the relation limn ~ 00 An = 00 need
not be true.

Denote by L: iC -+ iC the complex mapping L(Z) = Z2 - 12. Apply the
inverse L -1 iteratively to the disk r o= {Iz[ ~ 4} and consider the sequence
of sets r k =L- 1(ro) (k=O, 1, ... ) (see Fig. 1).

The following properties hold.

(i) The sequence {rd is decreasing. It is sufficient to show r 1 c roo

FIG. 1. The shape of the sets T k •
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Each point ZI Erl has a representation ZI =Jzo+ 12 for some zoEFo. We

have Izd~ +Jlzol + 12 ~ 4, hence ZIE ro·

(ii) Each of the sets r k consists of 2k disjoint connected components.
Denote them by r kv (v = 1, 2, ..., 2k

).

(iii) The sets rk have logarithmic capacity 41/2k (see, e.g., Landkof
p. 173J).

(iv) The diameter diam r kv of a connected component F kv satisfies the

inequality diam r kv ~ 8 . (2J8) -k. This is because on Fo, the inequality
Ir-l(z)1 ~ 1/2J8 holds.

(v) The sets F k are symmetric with respect to the real line.

Let r = n;,~ I rk · From the right continuity of logarithmic capacity
(Landkof [7, p.139]) we conclude that caplF=limk~cocaplrk=

limk ~ co 41/2k = 1. By (iv) and (v) r is a linear set. In particular we have
re [-4,4]. For the Hausdorff dimension dim F the relation
1/3 ~ dim r ~ 2/5 holds. We define a sequence of F-polynomials of degree
2N (N = 0,1, ... ). Let PI (t) = t - J8 and P2N(t) = PI (rN t) (N = 1, 2, ... ). We
have maxlETlpdt)1 =4+J8. Because the mapping r is onto on T, we
deduce

max Ip2N(t)1 = max IpdrN t)1 = max Ipdt)1 = 4 + J8 for all N.
lET tET lET

Hence the relation An(r) -> CfJ is not satisfied for the set r constructed
above. Instead the author conjectures that we may replace the lim by the
lim sup for this set and similar ones. In particular, the relation
lim N ~ co A 2N _ I(r) = CfJ should be true. There is an elementary problem on
the unit circle, somewhat related to this latter conjecture, which has been
solved by J6zsef Beck.

On the unit circle consider polynomials Pn- dz) (n ~ 2) of the form
Pn-dz)=n~:i(z-av), with all the zeros taken from the set of nth unit
roots. The author conjecture that max1z1=1 IPn-dz)1 >n8 holds for each
such polynomial and some numerical constant e> O. J6zsef Beck, however,
disproved it.

THEOREM 2. (J.Beck [1]). For each degree (n-1) (n~2) there exists
a polynomial Pn _ dz) of the form described above, with
max1z1=1 [Pn-I (z)1 ~c, with c>O independent ofn.

There is no immediate transference of Beck's construction to the set r,
so the problem whether the sequence {An (r)} is bounded, remains open.

4.2. On the Behaviour of the Numbers B n (ill) for Cantor Sets. The
numbers B n (ill) for an arbitrary sequence ill = (~ 1, ~2' ... ) on the set rare
unbounded. Similar to the case of the unit circle, we can prove that
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(4)

Bn(w, r) > (log n)1I holds for almost all n and some numerical constant
() > 0. We do not prove the result for this special set r, but instead for a
whole class of Cantor sets frequ;ently used in mathematics.

Let o<p< 1/2 be a fixed number. Let q= l-2p. We construct a
monotonically decreasing sequence of sets Qk (k=O, 1,2, ... ) in the
following way. From the initial set Qo = [0, I] take away an open interval
of length pOq in such a way that two closed intervals of equal length p
remain left. Denote the result by Q I .

From each of the two separate intervals of the set Q I take away an open
interval of length pIq in such a way that 22 closed intervals of equal length
p2 remain left. Denote the result by Q2'

Continuing the procedure, we obtain a monotonic sequence of sets Qb
each consisting of 2k closed intervals of equal length pk.

The intersection C = n;;,~ I Qk is a compact regular set, of Hausdorff
dimension dim C = log 2/log (lip), and of positive logarithmic capacity for
which the inequality pq ~ capl C < 1/4 holds (Tsuji [11, p. 106]).

For the geometric description of the set C we need a suitable concept.
The intersections Ckv = C (\ Qkv (v = 1, 2, .., 2k

) are called k-components (or
components of order k) of the set C. Two k-components are called adjacent
if they are contained in one and the same (k - 1)-component.

When trying to carryover the ideas of the proofs in [10, 12] to the
set C, it turns out that we need independence of the integral
hlog Ix- yl d{l(Y) from the point XE C for some {lEW1(C). This is the
deeper reason why integration has to be with respect to the equilibrium
distribution y in order to get numerical results.

For the time being we are working with the set C which is not normalized
yet. We begin by proving some properties of the equilibrium distribution y
on C.

LEMMA 1. Let 0< p < 1/8. Then for any two adjacent k-components
CkV1 ' CkV2 (k~ 1) of the set C= C(P) the following inequality holds:

2 ..... y(Ckv,) ---~p"",- "",-.
y(CkvJ 2p

Remark. The assertion of Lemma 1 should be true (with a certain
constant M(P) in place of 1/2p) without the restriction p < 1/8, that means
for arbitrary p < 1/2. Our simple method, however, does not admit a proof
of the general case. Loosely speaking, the lemma says that the local varia
tion of the equilibrium distribution y is not too large.

Proof To prove (4) we use induction on k.

(i) For k = 1 only two I-components C11, C12 exist. For reasons of
symmetry we have y( C11) = y( C12)'
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Let (4) be true for k = 1, 2, ..., N - 1 and arbitrary adjacent pairs of
k-components CkVl ' CkV2 '

(ii) Consider two adjacent N-components, denoted by CNt, CN2

without restriction. Assume y( CN1 ) :?: y( CN2)' Two measures will be defined
on the components CNi U= 1, 2):

(a) The restriction of the equilibrium distribution y of C onto the
components CNi U= 1, 2). Denote them by yNi' Note that the measures YNi

are no longer normalized.

(b) The equilibrium distributions of the sets CNi themselves. Denote
them by K Ni U= 1, 2). Since the components CNi are homothetic to the set
C, the probability measures K Ni may be obtained from y by a simple linear
transformation. Furthermore, we have cap I CNI = pN . capI C.

(iii) Next we choose suitable points ~ E CNI' ry E CN2' We have

f UYNl(X)dKN1(X)=f UKNl(y)dYNI(y)=y(CNI)·log N 1 CCNl CNl P . capi

and similarly

Now choose ~ECN1 in such a way that UYNl(~):?:y(CN1)·log(1/pNcap/C)

holds. Correspondingly, choose '1ECN2 with UYm ('1 ):::;:y(CN2) ·log(l/pNcap/C),

(iv) We decompose the set C. The union CNI U CN2 represents an
(N - 1)-component. Denote by CN _ I the (N - 1)-component adjacent
to C rvI UCN2 . The union CNIUCN2UCN_l represents an (N-2)
component. Denote by CN _ 2 the (N - 2)-component adjacent to it,
and so on. Then C = CNI U CN2 U CN_ I U eN __ 2U ... U CI is a disjoint
decomposition of C.

(v) For the points ~ and '1 chosen in (ii), the relation Uy(0 - Uy(rj)
=0 holds by regularity of C. On the other hand, we have

UY(~) - U y ('1) = Ie (logl'1- xl-Iogl~- xl) dy(x)

= ( tm 10gl'1- xl dy(x) - tNl logl~ - xl dY(X))

+ ( tNl 10gl'1- xl dy(x) - tN2 logl~ - xl dY(X))

N-I f 1'1 xl+ L log~ dy(x)=11 +12+13,
k~ 1 Ck ." X
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for all XE Ck .

For the three terms 11 , I z, and 13 the following estimates are valid:

(/d By the choice of the points ~ and I} we have

I 1=f logll}-Xldy(x)-f logl~-xldy(x)
CN2 CN!

(/Z) We have 1~_xl~pN-1 for all XECNZ and II}_xl~pN-1q

for all XECNl . We get for Iz, Iz~y(CN2)·log(1/pN-1)-

y( C N1) .log(1/pN-1 q).

(/3) From the geometry of the set C we deduce

I I
I} xii (pN-k) pN-k

log ~-x ~log 1+-q- ~-q-

By induction hypothesis we have y(Ck)~(1/2p)(1+1/2p)N-k-1 (y(CN1 )+y(CN2 )).
Hence for 13 the following inequality holds:

N-1 N-k 1 ( I )N-k-1
I3~ -(y(CN1 )+y(CN2 ))· L P--'-2 . 1+-

2k=l q P P
1 1 1

~ - (y (CNl) + y(CN2)) . 2q . (1/2) _ p = - qZ (y (CNl) + y(CN2)).

Summing up the inequalities (/d, (/z), and (/3) yields

y(CNl )· (log(4q/p)- (l/qZ)) ~ y(CN2 )· (log(4/p) + (l/qZ)).

For p<1/8 the factor (log(4q/p)-(l/qZ)) is positive, and the inequality
(log(4/p) + (1/qZ))/(log(4q/p) - (l/qZ)) < 1/2p holds. This proves Lemma 1.

As an immediate consequence of Lemma 1 we obtain a relation between
the y-measure of a component Ckv = C n Qkv, and the ordinary length of
the interval Qkv' Denote the length of this shortest interval containing the
component Ckv by ICkvl. We have ICkvl =pk.

COROLLARY. Let 0 <p < 1/8. For any component Ckv the inequality
ICkvl ~ (y( Ckv))d is valid with d = d(p) = log(l/p )/log(l + 2p).

Let 0 = ao < a1< ... < an_ 1< an = 1 (n ~ 1) be an arbitrary decomposi
tion of the unit interval [0, 1]. Among the components of C contained in
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some interval [aV'a v +1] (v=O, 1, ...,n-l) we choose certain "largest"
components according to the following procedure.

If (av, av+ d n C ¥- 0 holds, denote by C"1 c [av' av+ 1] an a-component
of minimal order a. The iX-component C~1 adjacent to Cal cannot be
contained in [a v , a v + 1], since otherwise C"1 u C~l would be a component
of order (iX - 1) contained in [a v , a v + 1]' contradicting the minimality of iX.

Without restriction we may assume that C~I is located left from C"l'
Among the components possibly contained in the complementary set
[a v , a v + 1] \ ( C,,1 U C~l)' again choose a component Cf32 of minimal order 13·
The p-component CP2 adjacent to Cf32 is located right from Cf32 and cannot
be contained in Cay, av + 1 }

C~l C"I Cf32 C~2
1-----1 1-----1 1--1- f----j

av G v + 1

In this way all the points of Cn Cay, Gv+IJ are covered, that is,
C n Cay, Gv + I] = (C"l U C~l U Cf32 U Cp2 ) n [an av + I} Carrying through
the procedure for all intervals Cay, av +1], we obtain in a unique way a set
C"l' Cf32' ... of at most 2n pairwise disjoint inner components. This set of
inner components, together with the adjacent components C~l' Cp2 , ...,
form a complete (possibly multiple) covering of the set C.

LEMMA 2. Let 0= ao < a1 < .. , < an = 1 be a decomposition of the unit
interval. Let C"I, 1, C"l, 2, ..., CaN, N be the corresponding inner components,
Then the inequality L~~ 1 y( C"" v) ~ 2pj(2p + 1) holds.

Proof By Lemma 1, for any two adjacent components C"" v, C~" v the
inequality y( C~" J ~ (lj2p) y( C"" J is valid. Since the Ca" v and C~,. v

together cover the set C, we get

The result follows.

LEMMA 3. Let Ckv c Qkv be an arbitrary component of order k. Let f be
a real-valued function on the interval Qkv, twice continuously differentiable,
with its second derivative satisfying the inequality -ff!(x)~M>O in the
interior of Qkv' Then the following inequality holds:



12 GEROLD WAGNER

Proof (i) The component Ckv splits into two pairs of adjacent com
ponents of order (k + 2). We denote them by C(l), C(2) and C(3), C(4),

respectively, omitting the index (k + 2).
We first assume f to be monotonically non-decreasing on the interval

Qkv' On the component Ckv , we define a "testing function" u(x), piecewise
constant, in the following way:

for XE C(l)

for XE C(2)

for x E C(3)

for XE C(4)'

By Lemma 1, we have lu(x)I';:;; (1 + 1/2p)2 for all XE Ckv ' By means of the
testing function u(x) the integral Ie IfI dy can be estimated, using the

h

relation

th IfI dy ~ Lhf(X) u(x) dy(x)/s~~ lu(x)1 ~ (1 + 2~)-2 thf(X) u(x) dy(x).

(ii) We give an estimate for the integral on the right-hand side.
We have

f u(x) dy(x) =f u(x) dy(x) = 0.
e(l) u e(2) e(3) u e14)

Furthermore, by the assumption fff < 0, f is bounded from above. So we
may assume without restriction that f(x) < °holds all x E Qkv' Figure 2

x*
k+l

p
k

p q

f(x)

FIGURE 2
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illustrates the situation. The marked points x* and x** are meant to be the
left boundary points of the components C(2) and C(3), respectively.

The following estimates result from the mean value theorems:

f f(x)u(x)dy(x)~y(Ckv)·pk+lqf(x*)
c(1)uc(2)

and

f f(x) u(x) dy(x) ~ -q. y(Ckv )· pk+ I f(x**).
C(3)uC(4)

The inequalities together yield

f f(x) u(x) dy(x) ~ y(Ckv ) .pk+ I q . (f'(x*) - f'(x**))
Ch

(iii) If the functionfis monotonically non-increasing on Qkv, a similar
argument holds.

Consider the case whenfis not monotonic on Qkv' The component Ckv
splits into two (k+ I)-components Ck+I, Ck+l . By the assumption
j"(x) < 0, the function f is strictly monotonic on at least one of these two
(k + 1)-components. Replacing k by (k + 1), we may argue in the same way
as above.

The three cases together yield the inequality

f IfI dy ~ (2 2P+ 1)2 min(p2k+ I q2. y( Ckv )· M, p2k+3 q2. y(Ck+ d· M)
Ch P

8p 6q2 2

~(2p+1)2'M'ICkvl ·y(Ckv )·

This proves Lemma 3.

The Cantor sets C = C(p) (0 < p < 1/8) considered in Lemmas 1-3 pos
sess a logarithmic capacity < 1 and have to be normalized first. We do so
by applying to C a homothetic mapping with centre in 0 and ray ratio
s = l/cap t C. Thus the set C is transformed into a set C* with components
ctv' The interval [0, s] is the shortest interval containing C*.

Lemmas 1-3 remain valid with the components Ckv replaced by ctv'
Let w=(xj,x2, ... ) be a sequence of points on C*. Put Sn(x,w)=

L~~lloglx-xAI.The numbers Bn(w, C*) have been defined previously by



14 GEROLD WAGNER

B n (w, C*) = exp(max x E C' S n (x, W )). The following lemma constitutes the
main step used in proving the unboundedness of the sequence
{Bn(w, C*)}.

LEMMA 4. Let C* = C*(p) be a Cantor set with parameter p < 1/8
and logarithmic capacity 1. Let I?; 1, n?; 1 be integers, and let
I={i 1 , ••• ,iu }c{1, ...,I} and J={j1l ...,jv}c{n+I+1, ...,n+2l} be
arbitrary nonvoid index sets. Then there exist constants C1 >°and C2 > 0,
depending on p only, such that for every sequence w in C* the inequality

is valid with d = d(p) = log( lip )/log(1+ 2p).

Proof For sake of brevity denote by F(x) the function
maxi,EJ Si,(x, w) - maxi"E! Si"(X, w). The function F(x), considered on the
interval [0, s], has the following properties:

(i) logarithmic singularities at the points x ij + 1, ..., xiI;

(ii) at most 4F jump discontinuities of the first derivative;

(iii) the inequality -F"(x)?;nls2 holds at all points XE [0, s] where
F is twice differentiable;

(iv) let a, bE C* (a < b) be two adjacent singularities and let ctv be an
inner component (of order k) belonging to the interval [a, b], then for
each xECt the inequality -F"(x)?;p2/IctvI 2 holds. This inequality still
holds, if a = °and only b is a singularity, and if b = 1 and only a is a
singularity.

The singularities of the function F induce a decomposition of the interval
[0, s] into subintervals, which are denoted by h" ((J" = 1, 2, ... ). By
Lemma 2, the total y-measure of the inner components belonging to this
decomposition has value ?; 2pl(2p + 1). Two cases are possible:

(a) The y-measure of inner components belonging to intervals h" with
out any jump discontinuity of the first derivative, is ?; (1/2) . (2pl(2p + 1)).
Applying Lemma 3 and (iv) we get the estimate

f
p2 8p 6q2

C' 1F(x)1 dy(x)?;.E' 1Clvl2 . (2p + 1)2 ·1 Clvl
2

y(Clv)

?;8(2p+ 1)-2 p8q22P: 1=c 1(p»0.

The dash indicates that the sum is taken over inner components Clv ,

belonging to intervals h" without jumps of the first derivative.
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(6)

(b) The y-measure of inner components belonging to intervals hu with
some jump discontinuity of the first derivative is > (1/2) . (2pI(2p + 1
The number of these hu is ::;:; 4P. Together with the jumps we get :(; sf
subintervals H u ' c UhCT, on each of which the function F(x) is twice
differentiable. Repeating the argument of Lemma 2 we conclude that the
total y-measure of the inner components of the intervals H u ' is
?:- (P/(2p + 1))· (2pl(2p + 1)) = 2p2/(2p + 1)2.

By Lemma 3 and (iii) we get

Here the sum is taken over all inner components of the intervals H u " The
number of these inner components is ::;:; 2 . SP. Applying the Corollary to
Lemma 1 to the sum E ', we get the inequality

E'l Ctvl 2 y( Ctv)?:- E's2(y( Ctv))2d+ 1

(
2p2 )2d+ 1

?:-16s
2
P (2p+l)2.1612 .

Substituting (6) into (5) yields

t. IF(x)1 dy(x)?:- C2 'l~d

This proves Lemma 4.

with C2 = C2 (p) > O.

THEOREM 3. Let M?:- 0 and N?:- 1 be integers. Let mc
{M + 1, ..., M + N} be an index set, and denote by IIIII the cardinality of Ill.
Assume that IIllI ?:- N· dog log N for a certain positive constant 0 < C3 (p) < 1 to
be specified later. Then for every sequence w on C* the inequality

f maxn,E'lI Sn" (x, w) dy(x)?:- c ·log log N
C'

holds for some numerical constant c = c(p) > O.

Proof For each b with 0 < b.:::; 1 and every integer N?:- 1 we define a
number p(b,N) as follows. Put p(b,N)=infJc.maxn,E'lISn,(x,w)dy(x),
where the inf is taken over all sequences w on C* and all index sets
21 c {M + 1, ..., M + N} with IIllI ?:- b . N

Since integration is with respect to the equilibrium distribution y on C*,
we always have Jc' Sn, (x, w) dy(x) = 0, hence pCb, N)?:- O. For the same
reason the number pCb, N) is independent of M.

640/67/1-2



16 GEROLD WAGNER

(I) First let N be of the form N = nt = 2el (t?: 1, integer), where
e=e(p) is the least integer greater than 4d=4·(log(llp)jlog(I+2p)). Let
further no = 2. For an arbitrary index subset m c {M + 1, ,..., M + nt} with
Iml ?: d· nt consider the intersections

m 2 =mn {M +2 ·nt- l + 1, ..., M + (2+ 1) .nt-d

( 2=0,1, ...,~-1; t?: 1).
nt-l

Two cases are possible.

Case 1. There exist subsets m i , mj with j-i?:(1/2)·(ntln t_d,
1m;!?: (1/2) <5 ·nt-I> Imil?: (1/2) <5 ·nt- l . Then

f max Sn,(x, w) dy(x)
C* nvE 2t

?: t. :~~j Sn,(x, w) dy(x)

=~f max Sn,(x, w) dy(x) +-2
1

f max Sn,(x, w) dy(x)
2 C' Ill; C' Illj

+~ t. Im~x Sn, (x, w) - m:,x Sn, (x, w)1 dy(x)

?: p (-2
1

<5, nt-I) +-2
1

f Imax Sn,(x, w) - max Sn,(x, w)1 dy(x).
C* mj mj

Applying Lemma 4 with n=nt-2nt_1 and l=nt_l we get

f (
1) 1.( nt -2nt_ l )max Sn, (x, w) dy(x)?: p -2 <5, nt-l + -2 mIn CI , Cz ' 4d

C' n,EIll n t _ l

?:pG<5,nt- I)+C4 (C4=C4(P»0). (7)

Case 2. There is no pair m i , mj having the properties required. Then at
least one set m2 contains?: (3/2) Iml (n t _ r!n t ) elements. Hence, in Case 2,
we have

f max Sn,(x, w) dy(x)?: p (~<5, nt-I)'
C'~EIll 2

(8)
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Taking the infimum over all permissible index sets mand all sequences w
on the left-hand side of (7) and (8), we get

p(b, n l ) ~min (p Gb, nl_1), P Gb, n l _ 1 ) + c4 }

Note that Case 2 can occur only if the "density" (3/2) b satisfies (3/2) (; ~ 1.
Repeating the reduction step t times, we obtain

The * indicates that in the brackets only terms occur satisfying the
inequality

( 1)~ (3)I-r- - b~ 1
2 2 '" .

Assuming b~ (3/4 y, the latter inequality implies

log(9/8)
r~t· cs·t.

log 3

Hence, for b~ (3/4)1, the inequality p(b, nl)~ Cs ' t· C4~ C6 ·log log nl holds.
The positive constants c6 , C4' Cs depend on p only.

(II) Let N ~ n 1 be arbitrary. Choose n 1 such that n 1 ~ N < n 1 + l' If
there are ~ b .N elements of ~ in an index segment of length N, there is
a subsegment of length n l containing at least (1/2) b ·n l elements of ~.

Hence p(b, N) ~ p(1/2) b, nl ) ~ C6 ·log log nl ~ c ·log log N holds for
b~ c'~g log N. This proves Theorem 3.

THEOREM 4. Let OJ = (Xl' X 2 , ... ) be a sequence ofpoints on a Cantor set
C* = C*(p) (p < 1/8). Then the inequality Bn(OJ, C*) > (log n)1I holds for
almost all n and some numerical constant () = ()(p) > o.

Proof Theorem 4 follows almost immediately from Theorem 3.

Remarks. 1) Again nothing is known about the behaviour of the
numbers An(C*), hence nothing about the ratio Bn(OJ, C*)jAn(C*).

2) At an Oberwolfach conference 1980 Loxton [8] announced a con
siderable improvement of the author's result [12], using a method due to
Halasz [5]. This method can beused for the Cantor sets C*(p) as wen, by
a suitable change of the auxiliary functions occurring in the Riesz products
there.
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